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Abstract—The problem of homogeneous coherent nucleation of a spherical particle in an infinite
matrix is considered. A Landau-Ginzburg type potential is used to describe the material response.
The underlying Landau potential is taken to be of the 2-3-4 type and the gradient energy contribution
is taken to be quadratic. The nucleation problem is posed as an energy extremum problem and the
finite element method, in conjunction with a perturbed Lagrangian algorithm, is used to obtain
solutions with nucleus structure. The present nonlinear model spans the range from classical to
nonclassical nucleation and exhibits many of the physical phenomena associated with nonclassical
nucleation including divergence in radius and interface thickness of the critical nucleus and vanishing
of the nucleation energy as the instability temperature is approached.

1. INTRODUCTION

An area of current interest in materials science and solid-state physics is the understanding
and modeling of solid—solid phase transformations. Solid—solid phase transformations can
be classified as diffusional or diffusionless. According to Cohen ef al. (1979). diffusionless,
displacive phase transformations can be further classified into shuffle transformations
involving displacement of atoms, but no net strain, and lattice-distortive transformations,
where one Bravais lattice is converted into another. Lattice-distortive transformations
may be dilatational or deviatoric dominant. Strain energy dominated. deviatoric, lattice-
distortive transformations are termed martensitic.

Several different approaches to modeling the mechanics of structural transformations
have recently been pursued. Ball and James (1987) considered microstructural arrangements
of martensite variants through minimizing sequences of non-convex (multiple-well) free-
energy functionals. Abeyaratne and Knowles (1990) provided a theoretical basis for the
description of phase boundary motion based on the concept of interface driving traction
(or energetic driving force). A phase field model for phase transitions in solids has been
recently developed by Fried and Gurtin (1994). An alternative approach to modeling solid
state phase transitions has been in place for some time (Roitburd, 1978). The method is
based on nonlinear, nonlocal elasticity and can be regarded as a Landau-Ginzburg type
approach wherein the Landau potential (non-convex free-energy functional) is augmented
by a gradient energy contribution resulting from a continuum description of material
behavior at atomistic scales. This approach has been used to investigate behavior of shape
memory alloys by Falk (1983) and to describe modulated microstructures by Barsch and
Krumhansl (1984 ; 1988). This Landau—Ginzburg approach has also been applied to the
problem of nucleation (in one-dimension) by Olson and Cohen (1982) and later elaborated
upon by Haezebrouck (1987).

One of the primary issues in understanding the kinetics of structural transformations
in crystalline solids is the need for quantitative information on interfacial energy and
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energetics of nucleation. It is important, therefore, to develop solution techniques and solve
prototype problems to address these issues. Nucleation in solids has been extensively studied
within the framework of the so-called classical theory (well-defined constant strain nucleus
with a sharp interface with constant surface energy). The classical nucleation model (Fisher
et al., 1949 ; Kaufman and Cohen, 1958 ; Christian, 1975; Porter and Easterling, 1992)
is known to accurately represent nucleation behavior in the vicinity of the equilibrium
temperature.t Outside this regime, and especially as the instability temperature} is
approached, nonclassical nucleation occurs (Olson and Roitburd, 1992). Characteristic
features of nonclassical nucleation in solid-state phase transformations, not predicted by
classical theory, include a non-constant strain field within the nucleus, diffuse interface and
divergence of the size of the critical nucleus as the instability temperature is approached.

Using the special case of homogeneous nucleation (without the aid of catalyzing
defects) to address the transition between classical and nonclassical mechanisms, Landau—
Ginzburg theories have been applied to model one-dimensional nucleation problems by
Olson and Cohen (1982) and Haezebrouck (1987). Key features of the one-dimensional
model are the specification of strain at the center of the nucleus and the availability of
analytical solutions. Hong (1994) considered the spherical nucleation problem of a dila-
tational phase transformation but with a simpler representation of the constitutive
relation—the so-called two-parabola model. Although the two-parabola model lends itself
to analytical treatment, it does not reproduce critical phenomena associated with non-
classical nucleation which are observed in the one-dimensional model. Lusk (1994) discussed
surface effects in dilatational phase transformations with sharp coherent interfaces.
Budiansky and Truskinovsky (1993) used a simple Landau model to explore the inter-
action between an applied shear stress and a hydrostatic stress in tetragonal to monoclinic
phase transformations.

In this paper, the problem of homogeneous coherent§ nucleation of a spherical particle
in an infinite isotropic material is considered. We focus on a simple nucleation model
(thermally induced dilatation) which exhibits the key features associated with both classical
and nonclassical nucleation. One constitutive model, based on a Landau-Ginzburg free-
energy potential, is used for the entire system, i.e., for the parent and product phases.
Constitutive models of this kind are closely analogous to Cahn-Hilliard models of
diffusional phase transformations. The nucleation energy is derived from the full three-
dimensional nonlocal elasticity theory through appropriate symmetry considerations.
Additional identities which hold for spherical symmetry and for an infinite domain are
invoked to obtain an expression for the nucleation energy which depends on the dilatational
strain and strain gradient only. Under appropriate restrictions on the temperature depen-
dence of the elastic moduli, this expression is mathematically equivalent to the form of the
nucleation energy obtained by Cahn and Hilliard (1959) in their treatment of nucleation in
a two-component fluid. Thus the spherically symmetric displacive and diffusional nucleation
problems have the same mathematical structure.

Asymptotic solutions are presented for nucleation behavior in the vicinity of the
equilibrium and instability temperatures. Numerical results are presented for the full tem-
perature range and the energy, size and structure of the critical nucleus at various tem-
peratures are determined. The role of shear resistance or accommodation in the parent
phase is investigated. The numerical results are shown to be consistent with theoretical
predictions of behavior at the equilibrium and instability temperature limits.

In the following section, the spherically symmetric nucleation model is introduced and
theoretical predictions of behavior at the equilibrium and instability temperatures are
derived. The finite element implementation of the model is outlined in Section 3. Sample
results are presented in Section 4 and a discussion and concluding remarks are given in
Section 5.

t At the equilibrium temperature the potential wells associated with the parent and product phases have the
same level of free-energy density.

I At the instability temperature the curvature of the free-energy density of the parent phase vanishes.

§ In a coherent transformation, continuity of displacements and tractions across an interface are maintained.

Consequently. the accommodation of a coherent transformation is resisted by surrounding material and, in
general. the resulting deformation is inhomogeneous.
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2. NUCLEATION MODEL

2.1. Nucleation energy

The problem considered is that of coherent nucleation of a spherical particle in an
infinite isotropic elastic matrix. The transformation itself is taken to be a thermally-induced
dilatation and thus preserves the spherical symmetry of the problem. As will be seen below,
the dilatational transformation is relatively simple to model yet it exhibits many of the
features found in transformations with less symmetry. In particular, the role of shear
accommodation in the parent phase is investigated. The issue of shear accommodation
arises due to the inhomogeneous deformations associated with solutions with nucleus
structure. The nucleation event is driven by a temperature dependent driving force associ-
ated with the difference in free-energy densities of the parent and product phases. The
material is assumed to be governed by a Landau-Ginzburg free-energy which depends on
strain and strain gradients. The dependence on strain gradients is a consequence of extend-
ing a continuum description to atomistic dimensions and gives rise to a characteristic length
scale in the problem. The potential is assumed to be of the 2-3-4 type in dilatational strain
but quadratic in the deviatoric strain and in the strain gradients. A small strain theory is
employed although the methodology presented can be readily extended to account for
geometric nonlinearity (see Barsch and Krumhansl, 1988, for a discussion of this theory
together with application to 4 mm/2 mm ferroelastic martensite transformation and the
development of modulated microstructures). The free-energy functional for an isotropic
material undergoing spherically symmetric deformation at (absolute) temperature 7 can be
written as

* D D,
W =4n J (g6 T) + fege; + 71 (ui,fk ui,jk) + 7- (ui,lfjuk.kj)] r*dr 1))
0

where u,, £, = (u;;+u;;)/2 and e; = £,—¢,,0,/3 are the rectangular Cartesian components of
displacement, strain and deviatoric strain, respectively, and we take

Gt T) = A(e)* — Blew)* + Clew)*. 2

Because the transformation is taken to be dilatational, we use a 2-3-4 type potential for the
dilatational strain energy but deviatoric strain energy is taken to be quadratic. The last two
terms in (1) represent the strain-gradient energy which is deduced from the strain-gradient
energy for an isotropic material (Mindlin, 1965) by considering spherical symmetry (i.e.,

= u(r)e,, for which u,; = u,;; = u, ;). Note that for spherical symmetry, and if u’r — 0 as
r — oo, then the following identities| hold :

f Cleerar=3 j [ dr 3)
0

0

J [ i i }r” dr = J‘ (14, 1, 51 dr. C))

0 0

Now assume that g, = 0 in the parent phase and define the normalized dilatation strain as
N = &u/Ew, Where & 1s the transformation strain under homogeneous deformation (i.e.,
is a constant). Hence, # = 0 and = 1 correspond to the parent and product phases of the
transformation under homogeneous deformation respectively and # plays the role of an
order parameter. Thus, using (3) and (4), (1) can be written as

|| The condition for (2.4) to hoid is (1’ —u/r)*r — 0 as r = co which is also implied by w’r » 0 asr — 0.
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W =4n r [G0n. T)+ 5 (Y1 dr )

0

where a prime denotes differentiation with respect to » and the gradient coefficient,
Kk = (D, + D,)(&,)?, is a positive quantity. Here we have introduced the quantities
d =g+ Q2u3)*and g(n, T) = An*— By’ + Cn* where p = ji(g,)" is the scaled shear modu-
lus, A = A(&,)>. B = B(&,)" and C = C(s,)". The constants 4, B and C are (scaled)
second, third and fourth order elastic constants respectively. The form (5) is particularly
advantageous from a finite element point of view in that the normalized dilatation strain #
can be taken as the primary variable and standard linear finite elements can be employed
as described below. If the displacement field is required, it can be simply obtained from the
integral u(r) = &4 [f5(ns® ds)1/r.

The driving force for a temperature-induced phase transformation is the difference in
free-energy densities of the parent and product phases, which is temperature dependent.
Here, we wish to maintain an analogy with the Olson—Cohen model (Olson and Cohen,
1982; Olson and Roitburd, 1992) for martensitic systems to introduce the temperature
dependence of the 2-3-4 potential g(y, T) and provide a basis for subsequent modeling of
martensitic nucleation. To describe g(y, T), we consider a special case of the transformation
under homogeneous deformation (i.e., g, constant and e; = 0). As mentioned above,n = 0
and n = 1 correspond to the parent and product phases under homogeneous deformation,
respectively. Thus, for example, the driving force for transformation under homogeneous
deformation is given by Ag(T) = g(1,T)—g(0,T) = g(1, T), since g(0, T) = 0. At the equi-
librium temperature, 7,, the potential wells associated with the parent and product phases
have the same level of free-energy density, i.e., g(0, T.) = g(1, T,), hence Ag(T,) = 0. Let
Ag, denote the critical driving force at the instability temperature, T, ie., Ag; =
g(1,T)—g(0,T) = g(1, T). Note, at T, the bulk modulus of the parent phase vanishes (i.e.,
(0*9/on*Ny=o.r=1, = 2A4|7—7, = 0). Now define a normalized driving force o« = Ag(T)/Ag,.
Constraining g(n, T) to have minima at # = 0 (parent phase) and # = 1 (product phase),
assuming the modulus 4 is linearly proportional to (1 —a) and defining the energy density
barrier, ¢,, at the equilibrium temperature, 7. the moduli 4, B and C can be represented
as

Aldy = 16(1 —a)
B/, = 32(1 —2) —4ap
Clo = 16(1 —a) — 32 (©6)

where f = Ag,/¢,. The dependence of the 2-3-4 potential function g(y) on the normalized
driving force « is depicted in Fig. 1. The effect of increasing « is to reduce the energy density
barrier ¢ and to soften the moduli 4, B and C. The temperature dependencies of moduli
A, B and C are introduced through the temperature dependence of the normalized driving
force x (e.g., « = (T~ T,)/(T;—T,)). The first terms on the right hand sides of (6) imply the
temperature (or «) dependence of the bulk modulus, 24, of the parent phase and the second
terms (for moduli B and C) the temperature (or o) dependence of the driving force. Here,
we have linear « dependence for both quantities for simplicity.

For transformations under inhomogeneous deformation (i.e., those with nucleus struc-
ture), the deviatoric strain energy is non-zero and the energy functional (5) is used. In this
case, the 2-3-4 potential g(, T) has minima at 5 = 0 (parent phase) and = #,, (product
phase) where

3B+, /9B —324C
=0 e 7
Nim Ya @)

where A = A+2p/3. Since the modulus A is equal to one half the bulk modulus of the
parent phase, the Poisson’s ratio of the parent phase, v, can be represented as
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Fig. 1. Landau 2-3-4 potential g(n) for different values of normalized driving force .

v = (3—u/A)/(6+ p/A), which is temperature (or «) dependent if the moduli 4 and y have
different temperature (or «) dependencies. The initial Poisson’s ratio, v,, is defined as the
Poisson’s ratio of the parent phase evaluated at o« = 0.

The value of « corresponding to a transformation under inhomogeneous deformation
at the instability temperature is obtained from the condition 4 = 0 and is denoted as «,.
The value of «; depends on the initial Poisson’s ratio and the temperature dependencies of
the moduli 4 and p. Due to the shear resistance, the dilatational transformation under
inhomogeneous deformation first occurs at a value of « = «, corresponding to the coherent
equilibrium temperature,§ T.. Since §(0,T,) = 0, the value of « is obtained from the
condition §(#,,, T.) = 0 and depends not only on the initial Poisson’s ratio and the tem-
perature dependencies of the moduli 4 and u but also on the value of .

It is noted that the form of (5) is analogous to that considered by Cahn and Hilliard
(1959) in their treatment of nucleation in a two-component fluid. It will be shown later that
the nucleation model proposed here predicts the same asymptotic solutions as Cahn—
Hilliard’s at the coherent equilibrium and instability temperatures.

2.2. Nucleation problem

The nucleation problem is posed as an energy extremum problem. The energy associ-
ated with the formation of a nucleus, with strain profile 5(r), is given by (5). It can be seen
from (5) that the energy associated with constant strain profiles (without nucleus structure)
for which (dg/dn) = 0 and 5" = 0 will be extrema but violate the assumption of #*r — 0 as
r — oc (required for the use of (3) and (4)) except the one n(r) = 0 which is not of interest
to the nucleation problem considered here. However an additional extremum of (5) exists
for which a non-constant strain profile, #(r), is obtained. This extremum yields a local
energy minimum of W (Alexiades and Aifantis, 1986) with respect to 5(r) and corresponds
to the critical nucleus which is in unstable equilibrium with respect to the nucleus size. The
strain profile corresponding to the critical nucleus is referred to as the structure of the
critical nucleus and the associated energy is called the minimum nucleation energy barrier.
A finite element method, in conjunction with a perturbed Lagrangian algorithm 1s used to
obtain the critical nucleus solution.** To motivate the solution procedure, we first consider
the stationarity of the Landau—Ginzburg potential (5). After discussion of the governing
equation and appropriate boundary conditions for the nucleation problem, we discuss the
theoretical predictions for nucleation behavior close to the coherent equilibrium tem-
perature (x = &) and the instability temperature (« = o;). The perturbed Lagrangian

1 At the coherent equilibrium temperature §(0, T,) = §(n,., 7.).

** As will be seen below, the critical nucleus can be obtained through solution of a two-point boundary

value problem with an integral constraint. We choose to use the finite element method to solve this problem in
anticipation of future applications of this and related Galerkin methods to the martenistic nucleation problem.
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method is then introduced as a means of obtaining non-trivial (critical nucleus) solutions
for values of « in the range from «, to ;.
Taking the variation of (5) with respect to n and applying the divergence theorem gives

= [ dg(n) d*n 2k dy X . dn \[*
W=0= - d 2 8
0 0 L bn[ dn hdrz o | drront ke ) ®)
and the associated Euler—Lagrange equation is given by
d? 2k dy  dg
n Yl G(1) . )

Yo T dr T dp

It can be seen from (8) that the presence of the * term precludes the specification of either
essential or natural boundary conditions at r = 0. Unlike in the one-dimensional problem
(Olson and Cohen, 1982), the normalized strain # can not therefore be specified at r = 0 to
obtain non-trivial (i.e. those with a nucleus structure) solutions to (9). We assume that the
strain field is uniform at infinity and thus the boundary condition for the Euler-Lagrange
eqn (9) is given by

dn
___r“

5 ~ 0. (10)

For (3) and (4) to hold, the solution should also satisfy the following condition
wrlo,. =0 (11)

which also implies the parent phase at infinity (i.e., g(cc) = 0).

As mentioned above, there is a constant (trivial) solution of the Euler-Lagrange eqn
(9) subject to the boundary conditions (10) and (11), i.e., n(¥) = 0, and for which g(s) has
a minimum, but we are interested in the non-trivial solution which is in meta-stable
equilibrium with respect to strain perturbation but unstable with respect to the nucleus
size. Hence, the strain profile associated with this solution represents a critical nucleus. The
energy associated with the critical nucleus is the minimum nucleation energy barrier, which
is a local minimum of (5) with respect to #(r) but a maximum with respect to the nucleus
size. Before we introduce the perturbed Lagrangian method to obtain the critical nucleus
solution, we discuss the asymptotic solutions close to the coherent equilibrium and insta-
bility temperatures to show that the model can span the range from classical to nonclassical
nucleation.

2.3. Solutions near the instability and equilibrium

Close to the instability temperature (x — 2,), the normalized strain profile y(r) - 0,
since the energy density barrier, d) (the maximum of §), is close to zero. Following an
analogous procedure to that of Cahn and Hilliard (1959), (5) can be rewritten as

k4

N K "2 2
Wiaany = 4nj [4n* — By’ + 7 (n')*1r dr (12)

0
by neglecting the fourth order term in g(#). Introducing the parameters

B
A

Y=—=9 (13)

and
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-

1;2

r (14)

(12) can be rewritten as

2 -3i2 . %€ dY 2
W(o,_,a,) = 47[(}() A¥rp-3 J- |:Y2— Y 4+ (dl) }12 dr. (15)
0

Because the integral in (15) is dimensionless and independent of « and also noting that A-
0 but B remains finite as o — «,, for constant x, it can be shown that

W(u—var‘») ~ (ai _a)3/‘2- (]6)

If we define the radius, R, of the critical nucleus by |#'|,—x = |#'|m Which means that the
maximum strain gradient occurs at r = R, then it can also be shown that

Ripany ~ (=)™ "2 (17)

It can be seen from (16) and (17) that, as « — «;, the nucleation energy tends to zero but
the radius of the critical nucleus tends to infinity. This behavior is associated with the
nonclassical nucleation but is not predicted by the classical nucleation theory. The exponents
in (16) and (17) are consistent with the results of Cahn and Hilliard (1959) who considered
nucleation in a two-component fluid.

Close to the coherent equilibrium temperature (« — o), it can be assumed that the
radius of the critical nucleus is large compared with the interface thickness and that the
strain within the nucleus is constant, then the strain gradient in (5) can be assumed constant
within the interface thickness and zero elsewhere. In this case, the present model reduces
to that of the classical theory and it can be shown that

1627
(x—2.) = R T 5 (18)
3§(nm)"
and
2r
Ryony=— 75— 19
o §(1,) 19

where T is the surface energy. Since g(n,,) is a function of « and 4(y,) =0 at a = «,
expanding §(y,,) about «, and neglecting the higher order terms in (x—,), it can be shown
that g(n,,) ~ (x—a,) as « - «, and

W(aau(.) ~ (a - (X‘.) -2 (20)
and
R(aau‘) ~ ((x—a(‘)_l' (21)

Following the definition by Olson and Cohen (1982), the interface thickness, §, men-
tioned above is defined as
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_ 1)
7 [

(22)

It can also be shown that the interface thickness, J,, at the coherent equilibrium temperature

can be represented by
. k 8C
b= |xnr
(J5e5)

which is used as the characteristic length scale for the nucleation problem. Introducing the
parameters

(23)

x=u,

= (24)
nm
and
20\! 2
-_ (2L . 25
f ( . ) Hom (25

substituting (24), (25) into (5) and also applying (7) and (23), the nucleation energy at the
coherent equilibrium temperature can be represented as

. © an\ ., ..
W(a:m.) = n¢16} [ [ﬁz —2’/73 + ﬁ4 + (E’%) jlt‘- dt (26)
0

where

R B\
@—CQJ @7)
is the energy density barrier at « = o,. Since the integral in (26) is dimensionless, this implies
that the solution #(7) of the Euler-Lagrange equation associated with (26) is independent
of the material moduli. The quantity ¢.6 can thus be used as the nucleation energy scale.
The quantity # defined in (24) plays the role of an order parameter. Hence, # = 0 and
i1 =1 correspond to the parent and product phases of dilatation transformation under
inhomogeneous deformation, respectively. It should be noted that 77 and 5 are different
order parameters; the latter is an order parameter for dilatational transformation under
homogeneous deformation. A quantity of interest is #(0), the normalized strain in the

critical nucleus at r = 0, which is representative of the nucleus structure. For strongly
classical nucleation, #(0) &~ 1 while for strongly nonclassical nucleation #(0) = 0.

A=,

2.4. Perturbed Lagrangian method
A perturbed Lagrangian method is introduced to obtain the critical nucleus solution.

First we note that any non-trivial solution satisfies the following condition for some 7 and
R

0

J‘x (h—MHHR—-r)rdr=0 (28)

where 7 is the volume average of the normalized dilatation strain # within a sphere of radius
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Rand H is the Heaviside step function. The perturbed Lagrangian consists of the nucleation
energy (5) together with the constraint (28) and is written as

W =4n {jj [g‘(n) + % (17’)2]r2 dr+ J’i An—MHR—r)r dr— 21/3} (29)

) 0

where 4 is a Lagrange multiplier and y is a large positive constant. Taking the variation of
(29) with respect to 1 and 4 yields two Euler—Lagrange equations

(A’ 2kdn _dg(n)

2 S H(R— 3
hdrz + 4 dn +/ H(R—r) (30)
and
e _ , i
[ n—MHR—r)r dr=—. (31)
Jo /

The boundary condition is the same as (10) and the non-trivial solution we seek is that
which in addition satisfies (11). Since y is a large constant, (31) is equivalent to (28) as long
as the value of 4 is small compared to y (i.e., A « 7). However, only at 4 = 0, is the solution
of (30) equivalent to the non-trivial solution of (9). Hence, to obtain the strain profile of
the critical nucleus it is required to solve (30) and (31) subject to (10) and (11) and for
values of 7 and R that make 4 = 0. This procedure is carried out by means of the finite
element method which is described in the following section.

3. FINITE ELEMENT IMPLEMENTATION

The variation of (29), or the weak form of (30-31), is written as

> [dg _
oW =0= J [Ld(:—) 517+m)’6r,’+AH(R~r)5n]r3 dr
0

+51[J1 n—mMHR—rrdr— l/l] (32)

0

The finite element implementation of the weak form (32) follows standard procedures but
with the normalized dilatation strain # and the Lagrange multiplier 4 taken as the primary
variables. Using standard isoparametric elements we write

no= Y N = N, (33)

a=1

for strains within an element. The strain gradients within an element are given by
2
.= Y Ne:(&(M)E,n; = Bd,. (34)
a=1

The weak form (32) requires only a linear variation of # within an element and we
choose standard two-node linear elements. Writing similar interpolation relations for the
variations, substituting into the incremental form of (32), allowing for the arbitrariness of
nodal and Lagrange multiplier variations and using a standard Newton—Raphson procedure
yields
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K (@)Ad" = —f(d")

L@ (TN (AdY) (Z,NAd!

R A LSS e
r 7 AN A

3, jnr[NT(dg d(;’”) 4+ H(R— r)> + BTKn;] 7 dr

fi

@) = "
Ji (1@~ HR—)r dr— - 2
o _[0@ o@
KA = [W 04 ]

d?g(n. , _ 5
Z.fa, [—qu(?—‘) NN+ KBTB} ridr ZfoNTH(R—r)r’dr
7

g (35)
_ 1
Z Jo NH(R—r)r* dr -

which is solved for the increment in nodal dilatational strains, Ad”, and in Lagrange
multiplier, A1", at the n™ iteration. The nodal quantities, d, and Lagrange multiplier, /., are
updated as d"*' = d"+ Ad" and iteration proceeds until the residual vanishes to within a
desired tolerance. Recall that the non-trivial solution corresponding to the critical nucleus
is that for which 4 = 0. A simple procedure to search for the non-trivial solution is conducted
by picking an appropriate value of 7 and varying R to solve (35) until a solution for which
A = 0 to within a sufficient tolerance is obtained. The appropriate value of 77 should be large
enough in order to obtain the desired solution. In our analyses, we choose 7 to be close to
n* where n* is such that g(n*) = 0, §'(n*) < 0. The value of #* depends on the normalized
driving force «. In the following section, results are presented for the critical nuclei as a
function of driving force « for different values of initial Poisson’s ratio.

4. RESULTS

Calculations were carried out for different values of normalized driving force, a, within
the range of o from «, to «,. The relevant material parameter is f = —3.0. Two temperature
dependencies for the shear modulus are considered through the normalized driving force
«. One assumes the same linear « dependence as the modulus 4, i.e. u = py(1—a), another
assumes constant shear modulus, i.e. g = u,, where y, is the initial shear modulus at o = 0.
Different values of the initial Poisson’s ratio v, = 0.3, 0.4, 0.45 and 0.5 were chosen to
demonstrate the influence of the deviatoric deformation on the nucleation behavior of the
dilatational transformation.

In Fig. 2, the normalized strain profiles 7(r), defined in (24), for critical nuclei are
plotted as a function of r/d, for different values of normalized driving force, «, with linearly
o dependent shear modulus and initial Poisson’s ratio v, = 0.3. The associated values of
the normalized driving force at the coherent equilibrium and instability temperatures are
o, = 0.7318 and «; = 1, respectively.

It can be seen from the figure that, as o — o, for example « = 0.75, the normalized
strain is uniform within the nucleus with a sharp decrease in strain over a narrow range—
indicating a somewhat sharp interface. In contrast, as a — #; (for example « = 0.99), the
normalized strain profile is non-uniform within the nucleus and the strain transition occurs
over a broader range—indicating a more diffuse interface. The intermediate cases, « = 0.85
and « = 0.95, have non-uniform strain profiles and relatively sharp interface thicknesses.
The case a = 0.75 is representative of strongly classical nucleation which has a fully
developed product phase nucleus (y = #,,) and a sharp interface. The case a = 0.99 is
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3

Fig. 2. Normalized strain profiles for critical nuclei, 7(r). for different values of normalized driving
force o with linearly « dependent shear modulus and v, = 0.3.

representative of strongly nonclassical nucleation which has a nucleus structure close to
that of the parent phase and a diffuse interface.

In Fig. 3(a), the normalized center strain /(0) for the critical nucleus is plotted as a
function of normalized driving force, o, with linearly « dependent shear modulus and the
values of initial Poisson’s ratio v, = 0.3, 0.4 and 0.5 which have corresponding values of
o, = 0.7318, 0.5711 and O respectively and the same value of o, = 1. The reason that a,
depends on Poisson’s ratio is that deviatoric deformation of the matrix (associated with
the inhomogeneous dilatational strain field of the critical nucleus) costs energy. Since the
ratio of the shear modulus to the bulk modulus decreases as the Poisson’s ratio increases,
the required driving force decreases as the Poisson’s ratio increases. Each curve in Fig. 3(a)
starts from its associated value of « = «, and ends at « = 1, since there is no nucleation for
o < o, and both the bulk and shear moduli vanish at &« = 1. The normalized center strain
decreases as driving force increases. As a — a,, the spherical nucleus structure, which has
7(0) = 1, can be considered as strongly classical, i.e. the nucleus center strain is identical to
that of the fully developed product structure. It should be noted that the value of 1, depends
on Poisson’s ratio and o. As a — 1, the nucleus structure, which has #(0) —» 0, becomes
indistinguishable from the parent structure and the behavior is strongly nonclassical. Fol-
lowing the classification of nucleation based on the normalized center strain by Olson and
Roitburd (1992), a dashed line with 7(0) = 0.5 is plotted for reference and classification in
Fig. 3(a). For /(0) > 0.5, the nucleus structure is closer to the product phase than to the
parent phase and the behavior can be regarded as a modification of classical nucleation.
For 7(0) < 0.5, the nucleus structure is closer to the parent phase than to the product phase
and the behavior is strongly nonclassical. It can be seen from Fig. 3(a) that the material
with a lower value of Poisson’s ratio requires a higher driving force for nonclassical
nucleation, which means that the nucleation of a dilatational transformation becomes more
classical as the ratio of the shear modulus to the bulk modulus increases. Hence, the case
vy = 0.5, for which u/4 = 0, is the most nonclassical.

In Fig. 3(b), the normalized center strain #(0) for the critical nucleus is plotted as a
function of normalized driving force, «, with the initial Poisson’s ratio v, = 0.45 for different
temperature dependencies in the shear modulus. The values of «, are 0.4025 and 0.632 for
linearly « dependent and constant shear moduli, respectively. The values of «; are 1.0 and
1.14 for linearly « dependent and constant shear moduli respectively. Note that the bulk
modulus vanishes at « = 1 and becomes negative for « > 1. Mathematically, based on the
model proposed here, §(0) > 0 as x — o; for the case of constant shear modulus. For
vo = 0.45, and for the constant shear modulus case, classical nucleation (i.e., #(0) > 0.5)

SAS 33:13-6
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Fig. 3. (a) Normalized center strain #(0) for the critical nucleus as a function of normalized driving

force o with linearly « dependent shear modulus for v, = 0.3, 0.4 and 0.5. (b) Normalized center

strain 7(0) for the critical nucleus as a function of normalized driving force a with v, = 0.45; the
solid line for y = py(1 — o) and the dashed line for u = p,.

only is observed for the range 0 < « < 1. For higher values of initial Poisson’s ratio,
nonclassical nucleation (i.e., (0) < 0.5) would be observed in the range 0 < a < 1.

In Fig. 4(a), the radius R of the critical nucleus, normalized with respect to the length
scale J., defined in (23), is plotted as a function of normalized driving force, «, with linearly
x dependent shear modulus and for the values of initial Poisson’s ratio v, = 0.3, 0.4 and 0.5.
The radius of the critical nucleus, which is infinite at the coherent equilibrium temperature
(o = &), is seen to decrease initially to a minimum, then to increase and become infinite
again at the instability temperature (« = «,) for all three cases. The phenomena close to
the coherent equilibrium and instability temperatures are consistent with the theoretical
predictions. Close to the coherent equilibrium temperature, the critical radius depends on
the normalized driving force according to R ~ (x—a.)~"?. The exponent is based on our
numerical results of R/d.= 37.57 and 25.75 at « =0.734 and 0.735, respectively, for
v =0.3; R/6, =45.24 and 19.67 at o = 0.575 and 0.58, respectively, for v, = 0.4 and
R/6, = 88.71 and 44.25 at o« = 0.01 and 0.02, respectively, for v, = 0.5. The value of the
exponent is equal to our theoretical prediction, — 1, which is consistent with the classical
nucleation theory. Close to the instability temperature, we have R ~ (1 —a)” where
m= —0.49, —0.50 and —0.49 for v, = 0.3, 0.4 and 0.5 respectively, based on the numerical
data of R/J, = 2.605 and 3.657 for v, = 0.3, R/3.=3.279 and 4.631 for v, = 0.4 and
R/6. = 5.017 and 7.067 for v, = 0.5 at & = 0.998 and 0.999 respectively. The values of the
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Fig. 4. (a) Radius R of the critical nucleus, normalized with respect to 6., as a function of normalized

driving force x with linearly « dependent shear modulus for vy = 0.3, 0.4 and 0.5. (b) Radius R of

the critical nucleus, normalized with respect to §,, as a function of normalized driving force « with
vy = 0.45; the solid line for u = py(1 —a) and the dashed line for u = p,.

exponents are very close to our theoretical prediction, —0.5, which is consistent with the
well-known nonlocal Cahn—Hilliard theory (Cahn and Hilliard, 1959). The phenomenon
of R— o0 as a — 1, observed here, is an expected feature of the nonclassical nucleation.
This phenomenon is not observed in the simpler two-parabola model of Hong, 1994.

In Fig. 4(b), the radius R of the critical nucleus, normalized with respect to the length
scale J., is plotted as a function of normalized driving force, «, with v, = 0.45 for different
temperature dependencies in the shear modulus. The radius does not go to infinity at « = 1
for the constant shear modulus case. As mentioned above, the bulk modulus vanishes at
@ = 1, but in this case the effective modulus A does not vanish until & = o; > 1. As shown
in the figure, the radius does go to infinity as « — a,. Close to the coherent equilibrium
temperature, the critical radius depends on the normalized driving force according to
R ~ (x—a,) . The exponent is based on our numerical results of R/, = 57.46 and 27.35
at« = 0.408 and 0.414 respectively for linearly « dependent shear modulus and R/5, = 40.58
and 24.92 at o = 0.64 and 0.645 respectively for constant shear modulus. Both cases are
consistent with the theoretical prediction.

In Fig. 5(a), the effective interface thickness & of the critical nucleus, normalized with
respect to d,, is plotted as a function of normalized driving force, «, with linearly « dependent
shear modulus and the values of initial Poisson’s v, = 0.3, 0.4 and 0.5. The value of 6/d.,
approaches unity as o — o, increases gradually initially and then increases rapidly as the
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Fig. 5. (a) Effective interface thickness d. normalized with respect to ., as a function of normalized

driving force « with linearly « dependent shear modulus for v, = 0.3, 0.4 and 0.5. (b) Effective

interface thickness d. normalized with respect to .. as a function of normalized driving force a with
vy = 0.45; the solid line for ;¢ = po(1 —2) and the dashed line for yt = w,.

instability temperature (x = %, = 1) is approached. The case with the higher initial Poisson’s
ratio has a thicker interface. which means that it behaves in a more nonclassical fashion.
Close to the instability temperature, the effective interface thickness has the same rate of
divergence as the critical radius i.e. & ~ (1 —x)"” where m = —0.48, —0.50 and —0.49 for
vo = 0.3, 0.4 and 0.5 respectively, based on the numerical data of §/d, = 5.30 and 7.40 for
vo=0.3; 6/5. = 6.69 and 9.43 for v, = 0.4 and 4/, = 10.15 and 14.27 for v, = 0.5 at
o = 0.998 and 0.999 respectively.

In Fig. 5(b), the effective interface thickness 4 of the critical nucleus, normalized with
respect to J., is plotted as a function of normalized driving force, a, with the initial Poisson’s
ratio v, = 0.45 for different temperature dependencies in the shear modulus. As seen from
the figure, the interface thickness does not go to infinity at « = 1 for the case of constant
shear modulus. For both cases, the values of d/9, approach unity at % — g,.

In Fig. 6(a), the nucleation energy W of the critical nucleus, normalized with respect
to ¢.d7, is plotted as a function of normalized driving force, x, with linearly o dependent
shear modulus and the values of initial Poisson’s ratio v, = 0.3, 0.4 and 0.5. The nucleation
energy barrier is infinite at the coherent equilibrium temperature (¢ = «.), but decreases
rapidly as the driving force increases and tends to zero as the instability temperature
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Fig. 6. (a) Nucleation energy W of the critical nucleus. normalized with respect to ¢, 8. as a function

of normalized driving force o with linearly x dependent shear modulus for v, = 0.3. 0.4 and 0.5.

(b) Nucleation energy W of the critical nucleus, normalized with respect to ¢.8]. as a function

of normalized driving force o with v, = 0.45 the solid line for g = y,(1 — %) and the dashed line
for pt = 1.

(x =, = 1) is approached. Hence, nonclassical nucleation is energetically favored, par-
ticularly close to the instability temperature. The case with the higher initial Poisson’s ratio
costs less energy for nucleation of the dilatational transformation. Close to % = a,, the
dependence of the energy barrier on the normalized driving force is W ~ (x—a,) >, based
ondata of W = W/($.6]) = 7954 and 3754 at x = 0.734 and 0.735 respectively for v, = 0.3;
W = 11490 and 2185 at o = 0.575 and 0.58 respectively for v, = 0.4 and W = 43850 and
10890 at o = 0.01 and 0.02 respectively for v, = 0.5. The exponent is equal to the theoretical
value, —2, and consistent with the classical theory. Close to the instability temperature
(¢ = a; = 1), the nucleation energy barrier goes as W ~ (1 —2)'*, based on data of
W =13285x10"% and 1.159x 10~* for v, =0.3. W =12276x10"" and $8.039 x 10~ for
vo=0.4and W = 1.543 x 10~ and 5.455 x 10~ * for v, = 0.5 at x = 0.998 and 0.999 respec-
tively. This exponent is equal to the theoretical value. 1.5, and also counsistent with the
result predicted by Cahn and Hilliard (1959). A significant difference between the classical
nucleation theory and the present model is that the energy barrier of the classical theory
remains finite even at the instability temperature.

In Fig. 6(b), the nucleation energy W of the critical nucleus, normalized with respect
to (ﬁcéf, is plotted as a function of normalized driving force. z, with the initial Poisson’s
ratio v, = 0.45 for different temperature dependencies in the shear modulus. [t can be seen
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that, for the case of constant shear modulus, the nucleation energy does not go to zero at
« = 1, but rather has the value 1.843¢.6>. This means that nucleation for the case of
constant shear modulus is more classical than for the case of the linearly « dependent
shear modulus. Close to the coherent equilibrium temperature, both cases depend on the
normalized driving force according to W ~ (x—x,) 2%, based on data of W = 18490 and
4201 at o = 0.408 and 0.414 respectively for linearly « dependent shear modulus and
W = 9187 and 3466 at « = 0.64 and 0.645 respectively for constant shear modulus. The
exponent is equal to the theoretical value, —2, and consistent with the classical theory.

5. DISCUSSION AND CONCLUSION

The problem of nucleation of a solid-solid displacive phase transformation has been
addressed within a finite element framework. A nonlinear, nonlocal (in the sense of gradient
energy) material model based on a Landau-Ginzburg type potential is used. A gen-
eralization of the one-dimensional Olson-Cohen (1982) model to a spherical geometry has
been presented. The spherically symmetric problem represents a genuine three-dimensional
state of deformation albeit one of high symmetry. Although the problem depends upon a
single spatial variable only, several issues arise which are not encountered in the strictly
one-dimensional problem considered by Olson and Cohen (1982). One significant difference
between the spherical and one-dimensional models is in the specification of boundary
conditions. To generate non-trivial solutions with nucleus structure, the strain can be
specified at the nucleus center in the one-dimensional problem (Olson and Cohen, 1982)
but not in the spherical problem considered here. Here, the finite element method, together
with a perturbed Lagrangian method, is used to obtain the non-trivial solution of interest
corresponding to the critical nucleus. An additional difference is the role of shear accom-
modation in the parent phase. A non-homogeneous dilatational deformation field is
accompanied by deviatoric strains. The results of the present paper illustrate that shear
(deviatoric) accommodation energy inhibits the nucleation of a dilatational phase trans-
formation, since the required driving force increases as the ratio of the shear modulus to
the bulk modulus increases.

The numerical results for various features of interest are consistent with the theoretical
analyses at the coherent equilibrium and instability temperatures which are also consistent
with the well-known nonlocal Cahn-Hilliard theory for nucleation in a two-component
fluid (Cahn and Hilliard, 1959). Thus the results shown illustrate the key features associated
with not only classical nucleation but also the nonclassical nucleation.

In the numerical calculations, different values of initial Poisson’s ratio were chosen to
demonstrate the influence of the deviatoric deformation on the nucleation behavior of the
dilatational transformation. The material with a lower value of initial Poisson’s ratio
requires a higher driving force for nonclassical nucleation, since the ratio of the shear
modulus to the bulk modulus increases with decreasing Poisson’s ratio. Different tem-
perature dependencies for the shear modulus are also considered. The case of constant
shear modulus behaves in a more classical fashion than does the case of temperature
dependent shear modulus.

Work in progress consists of a generalization of the present procedure to the treatment
of martensitic nucleation.

Acknowledgements—The authors are grateful for the support of the National Science Foundation through grant
No. MSS-9313233 to Northwestern University and to P. Hong for helpful discussions. Helpful comments from
the reviewers are also gratefully acknowledged.

REFERENCES

Abeyaratne, R. and Knowles. J. K. (1990). On the driving traction acting on a surface of strain discontinuity in
a continuum. J. Mech. Phys. Solids 38, 345-360.

Alexiades, V. and Aifantis, E. C. (1986). On the thermodynamic theory of fluid interfaces: infinite intervals,
equilibrium solutions and minimizers. J. Coll. Interf. Sci. 111, 119-132.

Ball, J. M. and James, R. D. (1987). Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal.
100, 13-52.



Solid—solid dilatational phase transformation 1919

Barsch, G. R. and Krumhansl, J. A. (1984). Twin boundaries in ferroelastic media without interface dislocations.
Phys. Rev. Lett. 53, 1069-1072.

Barsch, G. R. and Krumhansl, J. A. (1988). Nonlinear and nonlocal continuum model of transformation
precursors in martensites. Mez. Trans. 19A, 761-775.

Budiansky, B. and Truskinovsky, L. (1993). On the mechanics of stress-induced phase transformation in zirconia.
J. Mech. Phys. Solids 41, 1445-1459.

Cahn, J. W. and Hilliard, J. E. (1959). Free energy of a nonuniform system. III. Nucleation in a two-component
incompressible fluid. J. Chem. Phys. 31, 688-699.

Christian, J. W. (1975). The Theory of Transformations in Metals and Alloys, 2nd ed., Pergamon, Oxford, U.K.

Cohen, M., Olson, G. B. and Clapp, P. C. (1979). On the classification of displacive phase transformations. In
Proc. ICOMAT-79, pp. 1-11, MIT.

Falk, F. (1983). Ginzburg-Landau theory of static domain walls in shape-memory alloys. Z. Phys. B-Condensed
Matter 51, 177-185.

Fisher, J. C., Hollomon, J. H. and Turnbull, D. (1949). Kinetics of the austenite martensite transformation. Trans.
AIME 185, 691-700.

Fried, E. and Gurtin, M. E. (1994). Dynamic solid-solid transitions with phase characterized by an order
parameter. Physica D 72, 309-323.

Haezebrouck, D. M. (1987). Nucleation and growth of a single martensitic particle. Sc.D. thesis, Massachusetts
Institute of Technology.

Hong, P. (1994). Nonclassical displacive transformation mechanics using Fe-Pd as a model system. Ph.D. thesis,
Northwestern University.

Kaufman, L. and Cohen, M. (1958). Thermodynamics and kinetics of martensitic transformations. In Progress
in Metal Physics, Vol. 7 (edited by B. Chalmers and R. King) pp. 165-246, Pergamon Press, New York.

Lusk, M. (1994). On martensitic phase nucleation with surface effects. J. Mech. Phys. Solids 42, 241-282.

Mindlin, R. D. (1965). Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Structures
1, 417-438.

Olson, G. B. and Cohen, M. (1982). Classical and nonclassical mechanisms of martensitic transformations. J.
Phys. 43, C4-75.

Olson, G. B. and Roitburd, A. L. (1992). Martensite nucleation. In Martensite (edited by G. B. Olson and W. S.
Owen), ASM International.

Porter, D. A. and Easterling K. E. (1992). Phase Transformations in Metals and Alloys, 2nd ed., Chapman and
Hall, London.

Roitburd, A. L. (1978). Martensitic transformation as a typical phase transformation in solids. In Solid State
Physics, Vol. 33 (edited by H. Ehrenreich, F. Seitz and D. Turnbull), pp. 317-390. New York. NY Academic.



